Bridge Text and Knowledge by Learning Multi-Prototype Entity Mention Embedding
نویسندگان
چکیده
Integrating text and knowledge into a unified semantic space has attracted significant research interests recently. However, the ambiguity in the common space remains a challenge, namely that the same mention phrase usually refers to various entities. In this paper, to deal with the ambiguity of entity mentions, we propose a novel Multi-Prototype Mention Embedding model, which learns multiple sense embeddings for each mention by jointly modeling words from textual contexts and entities derived from a knowledge base. In addition, we further design an efficient language model based approach to disambiguate each mention to a specific sense. In experiments, both qualitative and quantitative analysis demonstrate the high quality of the word, entity and multi-prototype mention embeddings. Using entity linking as a study case, we apply our disambiguation method as well as the multi-prototype mention embeddings on the benchmark dataset, and achieve state-of-the-art performance.
منابع مشابه
Bridging Text and Knowledge by Learning Multi-Prototype Entity Mention Embedding
Integrating text and knowledge into a unified semantic space has attracted significant research interests recently. However, the ambiguity in the common space remains a challenge, namely that the same mention phrase usually refers to various entities. In this paper, to deal with the ambiguity of entity mentions, we propose a novel Multi-Prototype Mention Embedding model, which learns multiple s...
متن کاملWord, Mention and Entity Joint Embedding for Entity Linking
Entity linking is a important for connecting text data and knowledge bases. This poster presents a word, mention and entity joint embedding method, which can be used in computing semantic relatedness in entity linking approaches.
متن کاملCorefrence resolution with deep learning in the Persian Labnguage
Coreference resolution is an advanced issue in natural language processing. Nowadays, due to the extension of social networks, TV channels, news agencies, the Internet, etc. in human life, reading all the contents, analyzing them, and finding a relation between them require time and cost. In the present era, text analysis is performed using various natural language processing techniques, one ...
متن کاملUMass CIIR at TAC KBP 2013 Entity Linking: Query Expansion using Urban Dictionary
This paper describes the system submitted to the TAC 2013 entity linking task of the Knowledge Base Population track. The core of the approach is probabilistic information retrieval over a search index of the knowledge base, including the text of Wikipedia. The retrieval results are further reranked using a supervised learning-to-rank model. The submission this year builds on the neighborhood a...
متن کاملEntity Disambiguation by Knowledge and Text Jointly Embedding
For most entity disambiguation systems, the secret recipes are feature representations for mentions and entities, most of which are based on Bag-of-Words (BoW) representations. Commonly, BoW has several drawbacks: (1) It ignores the intrinsic meaning of words/entities; (2) It often results in high-dimension vector spaces and expensive computation; (3) For different applications, methods of desi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017